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ABSTRACT 
3388.1 

An extension of the previously reported synthesis capability 

for a simple shock isolator is presented. Advances in the 

engineering scope and the algorithmic efficiency of the previous 

work a re  offered. 

package of m a s s  bd is to be protected from a multiplicity of shock 

A one degree of freedom system with a single 

pulses. Two common situations a re  considered. In the first type 

of problem a design is sought which minimizes the absolute 

acceleration felt by the package subject t~ relative displacement 

limitations. In the second type of problem a design is sought which 

minimizes the relative displacement subject to limitation on the 

absolute acceleration felt by the package. 

a r e  employed to characterize the bilinear spring and six additional 

Three design variables 

design variables a re  used to represent a piecewise-linear variable 

damping coefficient. The synthesis technique employed is based 

on an implementation of the gradient projection method, with 

certain special additional features. Results for several numerical 

examples a re  presented. 

designs it w a s  found that a reduction of a s  much as 25% in the 

By permitting a broader class of possible 

criterion function value, at termination of the synthesis, could be 

obtained in some cases. 
ii 
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. SYMBOLS 

- 
C time dependent coefficient of damping dexc ribed 

by C ( 0 )  thru C(5)  

- 
component of gradient in direction normal to 
previous gradient 1 U 

gradient of criterion functian 

distance from design to j th constraint 
A 

U modified gradient direction vector 

absolute displacement of mass X 

.. 
x A  maximum allowable absolute acceleration 

absolute displacement of base Y 

relative displacement between m a s s  and base z 

ZA absolute value of maximum allowable 
displacement 

unit vector normal to j 
the acceptable design region 

th 
constraint pointing into A 

j 

C constant damping coefficient 

C new design to be analysis 

c1 best design obtained at Any time 

C ( 0 )  thru C ( 8 )  variables describing piecewise linear damping 
with respect to time 

allowable lower limit on j 

allowable upper limit on j 

th 

th 

variable 

variable 
V i  

c 

CAL 
j 

CAU 
j 



. 

CBT 

DT 

absolute value of maximum allowable time rate 
of change of damping 

spacing i n  time of damping variables d(Q) thru 
c(5) 

K constant spring constant 

force of bilinear spring system 

Kn 
K2 

first spring constant of bilinear spring system 

s u m  of K t K' 
1 

K' second spring constant of bilinear spring system 

L maximum possible distance in given direction 
before encountering constraint ' 

LC number of pulses comprising the load condition 

M mass 

maximum of maximum absolute accelerations 
for all load conditions 

maximum of max?mum relative displacements 
of given design for all load conditions 

maximum absolute acceleration for a given 
design and the ith lbad condition 

maximum relative displacement of given design 
for ith load condition 

N matrix with columns corresponding to vectors 
of normals to active aonstraints 

th the i shock pulse 

difference in lengths of springs 

vii 
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CHAPTER 1 
INTRODUCTION 

. 

1. 1 Relation to Previous Work 

The research reported herein may be viewed as an extension 

in  scope and algorithmic efficiency of a synthesis capability for 

the automated optimum design of one degree of freedom shock 

isolators. The previous work reported in Ref. 1 considered a 

constant spring stiffness and a damping coefficient a s  design 

variables to be determined by the synthesis process. 

problem types were dealt with. 

Two distinct 

In the first type the objective 

is to select the spring stiffness and the damping coefficient so as 

to minimize the maximum absolute acceleration of the package 

subject a prescribed limit on the maximum relative displacement. 

In the second type of problem the objective is to select the spring 

stiffness and the damping coefficient so as  to minimize the maxi- 

mum relative displacement of the package subject to a prescribed 

limit on the maximum absolute acceleration. The synthesis tech- 

nique employed was a modification of the steep-descent alternate 

step methods (see Ref. 9). 

simple spring is replaced by a bilinear spring and the simple 

In the extension reported here the 

damper is replaced by a damping device capable of supplying a 

1 
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pr  epr ograrruned time dependent damping. This results in a 
0 

synthesis problem having nine design variables. 

The purpose of this study is to explore the influence of con- 

sidering additional design variables which admit a wider class of 

possible designs than those previously considered. 

1.2 Description of Problem 

Consider the simple shock isolator of Figure 1. The spring 

system is comprised of two concentric springs of unequal lengths. 

Thus, the shorter spring is not compressed until the deflection of 

the mass exceeds the difference in spring lengths, 6. 

teristics of this spring system are represented by the bilinear 

force-displacement curve shown in  Figure 2. 

variables a re  required to describe the force-displacement curve 

K1, K2, and the gap, 6. 

the force a s  a function displacement is given by K ( 2 )  = 

The charac- 

Three design 

1 Noting that K is K t K from Figure 1, 2 1 

K~ 6 t K2(e-6)  for  z > 6 

The coefficient of damping was chosen to be a piecewise 

linear continuous function of time. An illustration is shown in 
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Figure 3. 

The last value of the damping, C(5), continues on to t - m 

six variables a re  termed C(0)  thru C(5).  

This coefficient of damping has six design variables. 

These 

1. 3 Formulation of Problem 

The synthesis problem with the objective of minimizing the 

maximum absolute acceleration can be expressed as: 

Given the preassigned values of M(M=l) and DT, 

find values of C , . . . , C5, K1, K2, and 6 such that for 

i = 1, 2, ..., LC. 

0 

[ M a x  (Max 1;;; I ) ]  - Min 
i 

subject to the following 

< - DT 

L 

side constraints, 

CBT for j = 0, 1, 2,3,4 

0 < GAL. < C. < CAU for j = 0, 1,2,3,4,5,  
J -  J -  j - 

7 
0 < CAL6 < K < CAU6 K < K < CAU - 1 -  1 -  2 -  - 

behavior constraint, 

f o r i  = 1,2,  ..., LC 

and governing technology 
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The synthesis problem of minimizing the maximum relative 

displacement can be stated in a similar form: 

Given the preassigned values for M (M=l)  and DT 

find values of C 

for i = 1 , 2 , .  .. LC 

. . . , C5, K1 ,  K2, and d such that 
0’ 

[ ~ a x { ~ a x [ z ~ ~  1 1  Min 
i 

subject to the following side constraints, 

1 C. - C.+l l  5 CBT f o r j  = 0 , 1 , 2 , 3 , 4 .  

DT 

0 < GAL. < C. < CAU for j = 0 , 1 , 2 , 3 , 4 , 5  
3 -  3 -  j - 

behavior constraint, 

and governing technology, 

T 



CHAPTER 2 
ANALYSIS 

The equation of motion for the mass in Figure 1 is 

. .  N;; = K(y - X) t F (y - X) 

.. .. .. 
By making the substitutions z = y - x, z = y - x, and z = y - x 

the equation becomes 

.. MZ t Fi + K(z) = My. (1 1 
.. 

The mass, My is taken to be 1.0, and y is then viewed a s  an input 

acceleration, S ( t ) .  The acceleration felt by the mass is 

- -  .. 
x = C -  z t K(z). 

Equation (1) is difficult to solve in closed form; therefore, a 

numerical integration (Runge-Kutta) was used. 

examples of this method a re  given in Appendix I. 

Details and 

The analysis procedure terminates when a maximum displace- 

ment is found after the duration of the input pulse S(t). 

the numerical approach used to solve Eq. (l), the type of pulse 

does not have to be confined to "square" pulses, although square 

pulses will be the only type employed in  this paper. 

Because of 

! 

5 
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CHAPTER 3 
SYNTHESIS 

The synthesis method answers two questions. Which direction 

to  go from a given design point and how far to go in that direction. 

3. 1 Direction of Travel 

If the present design is not on a constraint, the best direction 

to  move in is the direction of the negative gradient of the criterion 

function (See Figure 4). 

the first partial derivatives of that function. 

most rapid increase in value of the function and similarly the 

negative gradient is the direction of most rapid decrease in value 

of the function. Because a closed form solution was not obtained 

for the equation of motion, an  explicit function for the gradient was 

not available. 

gradient was obtained by increasing each of the variables i n d i ~ d -  

ually and noting the change in criterion value per unit increase of 

each variable. 

The gradient of a function is a vector of 

It is the direction of 

A forward finite difference approximation to  the 

If the design point i s  constrained, then the synthesis procedure 

first determines whether it is advantageous to remain on the con- 

straint o r  to  get off of it. This is important because a constraint 

6 
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which is presently active may not be active at the optimum design. 

The result of remaining on a constraint,that is not active at  the 

optimum design, is getting "cornered*' at  a vertex of constraints 

and never reaching the true optimum design. 

This synthesis procedure avoids "cornering" by checking the 

inner product of the "negative gradient" and the normal vector to 

the active constraints. The normal to  the constraint surface used 

here is the one which points into the acceptable design space. 

the inner product is greater than zero, * then the new design is 

allowed to be off the constraint (See Figure 5). 

If 

This test is 

executed f o r  each active constraint at each point in the design path, 

since it is possible for  the design path leading to the optimum 

design to travel along a constraint for a while and then leave the 

constraint. Looking at this another way, it is seen that a positive 

I -  

inner product means the angle between the two vectors is acute and 

the negative gradient has a component in the same direction a s  the 

constraint normal. Thus, it would be useless to move along the 

constraint when moving off it reaps more gain. 

If the inner product described above is less than o r  equal to 

zero, it means a move in the negative gradient direction will 

4 4 

* The inner product of two vecbrs  A and B is defined as  a number 

I 



8 . 
violate the active constraint. In this case the best move (in the 

gradient sense) is in the direction given by the projection of the 

negative gradient on that constraint (See Figure 6). 

finding this direction, (G), is given in Refs. ( 2 )  and ( 3  ). 

direction may be viewed as the direction of constrained steepest 

descent. 

A method for 

This 

-L 

Fundamentally u is the vector which is the component of the 

gradient lying in the space orthogonal to the normals of the active 

4 

constraints. 

-g, minus N(N N) 

That is, u is the component of the negative gradient, 

T -1 T 21'  
A 

N ( - g )  where N is a matrix composed of 

columns which a re  the unit vectors normal to the active constraints 

and pointing into the acceptable design region. 

ponent of the negative gradient which would pierce the unacceptable 

design region has been subtracted from the negative gradient to 

find the ;direction (See Figure 6). 

In effect the com- 

n 
Figure 6 depicts the case where N is a single column, A.r 

J 
T 

Then N N = 2. A. = 1, because a. has been normalized to be a 
J J  J 
T -  A 

unit vector. 

the component of (-g) in  the A. direction o r  A. (-;). 

N (-g) is the component of A. in  the (-g) direction o r  
J 

A 
The direction 

J J 
T -1 T 4 A 

u = -g - N(N N) N (-z) is then 

--L 

-g - A. ( 1 ) - l  (Aj (-i)). 
J 
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The method of derivation of the u" direction is described in detail 

in Appendix ILI. 

3.2 Distance of Travel 

The question how far to go is easily answered for the case of 

linear constraints. * The maximum distance that it is possible to 

go in a desired direction without entering the unacceptable region 

is denoted by L. 

To illustrate this procedure, consider a general linear 

constraint 

8 

i = O  

where C. a r e  the variables of the vector C(O), C(1), . . . , C(8)  and 

a 

vector A. o r  (a 

look in 2 dimensions. 

1 

and b. a r e  constants. The normal to the f h  constraint is the 

. . . , asj). Figure 7 shows how u, and A 
The perpendicular distance from the current 

i j  3 
4 h 

a 
J oj' 1j' j 

design point to constraint j is called q. in the sketch. 

q. for linear constraints is 

The value of 
J 

3 
8 

b - 2 a. .  C .  j 1J i 

For all the constraints the minimum of q.  divided by the absolute 
J 

* The following is taken from Ref. .2. 
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value of the inner product of u and A., 
J 

is sought to find L. 

of u and A. is < 0 are used because (u, A.) > 0 signifies no 

component of ;will enter the unacceptable region by piercing the 

jth constraint. The quantity L will  always be > 0. Since the pro- 
8 

gram is always in  the acceptable region characterized by Z 
i = O  

C. < b., q. is always greater than or equal to zero and Iu A. I > 0. 

A similar treatment employed for the nonlinear constraint by 

Only constraints for which the inner product 

4 4 

J J -  

a.. 
1J 

-L 

1 -  J J J 

approximating it with its tangent hyperplane has been found to be 

very successful in the synthesis method. The procedure to find L 

is explained in  more detail in Appendix III. 

The length L does not necessarily produce an acceptable 

de sign because nonlinear constraints have been linearized to obtain 

it. (See Figure 8). 

If the program is at point (l), which is on constraint i, the 
A 

modified gradient u will be along constraint i. The associated 

length L from the procedure LINLEN will take the new design to 

point (2). Point (2), however, lies in the unacceptable region, with 

respect to the nonlinear constraint, but is seen to be acceptable 

with respect to the linearized approximation for the constraint j. 
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The synthesis program checks point (2) for both criterion value 

and acceptability. 

multiplied by 0.85 and a new move vector equal to 0.85 L u is used 

to generate a new design to be checked. 

repeated until either an acceptable point with lower criterion value 

is found or until the length becomes less than 0.00001 of its 

If either test ie not passed,. the length L is 

4 

This procedure is 

original value (Maximum number of cycles is 52). 

For an explanation of what the synthesis does if  the latter 

occurs, the reader is referred to section 3. 3. 1. 

3.3 Special Features 

3.3.1 6 Difficulty. As the synthesis progresses, it checks 

the s'idineness" of the negative gradient and the behavior constraint 

normal. It was found that with nine variables in the redesign cycle 

the inner product of the unit vectors corresponding to the negative 

gradient and the normal to the behavior constraint was often less  

than -0. 999. 

a position similar to  that in  Figure 9, 

This means the gradient and deflection bound a re  in  

It is seen that the component of the negative gradient which 

However, will not pierce the unacceptable region is very small. 

it was observed that the negative gradient component of the criterion 

with respect to the spring gap and the component of the normal to 
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behavior function with respect to the gap were +O. 999 and -0.999 

respectively. 

carried on with the remaining eight variables. 

The gap was then held fixed and the synthesis was 

In doing this an 

assumption had to be made. Consider that the results of several 

eight dimensional optimizations, each with a distinct fixed value of 

6 ,  are available. It must be assumed that a plot of optimum 

criterion function value's versus gap distance is unimoilal 

(i. e. has one minimum over the allowable range of values for a). 

The one dimensional search over 6 is terminated when 

I < O . O O O O ~  in. 
cur rent - - 6  I 'new 

In the synthesis problem where maximum absolute 

acceleration is the criterion function, special attention is given to 

the cases where 6 For,  as  seeninFigure  10, 

increasing 6 results in decreasing the over-all stiffness of the 

new > 'current 

spring system. (i. e. choose any x > 6 current and observe K(z) 

.) The softer spring system (with 6 = 6 ) new 1 *new < ~ ( 2 ) '  *current 

will  have a larger maximum relative displacement which may place 

the new design in violation of the relative displacement constraint. 

I f  this violation occurs, a move (with the first eight varia- 

bles) in the direction of the negative gradient to the behavior 

constraint will decrease the maximum relative displacement 
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enough to make the design acceptable with respect to the behavior 

constraint. However, precautions must be taken to assure that 

the design is also acceptable with respect to the side constraints. 

This can easily be accomplished by employing the direction 

(discussed in the synthesis chapter) with the negative gradient to 

the behavior constraint used in place of the negative gradient to the 

criterion function. Furthermore, it is seen that by using the 
4 

criterion function as a constraint in obtaining the direction u, the 

increase of the criterion value of the new acceptable point wi l l  not 

be as large as it would be if this constraint were omitted, 

Figure 11). 

(See 

3.3.2 Hop Out. In the event of the direction becoming 

zero, the program will  examine a point a short distance from each 

of the active constraints to see if  a non-zero u can be found. 
4 

If 

it can, it is the new direction of travel. This is a precaution which 

does not have to be taken if the gradients a r e  found exactly, because 

when ;is a zero vector the design satisfies the Kuhn-Tucker 

(Appendix IV) conditions and a constrained minimurn has been 

found (assuming the design space is convex). 

3. 3. 3 Zig-Zag. Multiple load conditions for dynamic 

systems often cause the criterion function to have a discontinuous 

gradient, It was found that with multiple load conditions cusp 
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areas similar to those shown in Figure 12 were encountered. 

Usually, no further progress can be made with the gradient method 

at a cusp point because the negative gradient points in  a direction 

giving larger criterion values than that of the cusp point. 

Figure 12). 

(See 

The direction of travel employed for the cusped region was 

obtained by performing a single step of the Schmidt orthogonali- 

zation process. 

orthogonal vectors from a set  of linearly independent vectors. 

This process is a method for obtaining mutually 

The 

two linear independent vectors for the process a re  the negative 

gradients at two consecutive acceptable designs. 

gradient of the first design is used as the base vector, 

The negative 

Then the 

direction of travel becomes the component of the negative gradient 

at the second design which is orthogonal to the base vector. 

example in  two dimensions is shown in  Figure 13, 

An 

This procedure may be viewed as treating the Pulse 2 

contours as constraints and only the component of the negative 

gradient which does not pierce this "unacceptable" region is used. 

Fo r  more than two pulses the direction 2 may have to be further 

modified, If g 

1 
-L 4 & 

is the gradient of the third pulse contour u2 = -g3 3 
- L A  4 4  A - (z3 g2) (g,) - (-g3 . U ) U where g is the negative gradient 

1 1  3 

where pulse 3 is active. The synthesis procedure used the method 
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whenever two consecutive de signs have negative gradients which 

have an inner product less  than (-0.70). 

A description of the computer program and associated flow 

chart can be found in Appendix V. 



. 
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CHAPTER 4 
NUMERICAL EXAMPLES 

4.1 htxoduction 

The purpose of the numerical examples is to examine the 

influence of increasing the number of design variables on the per- 

formance of the shock isolator with respect to the results pre- 

viously reported in Ref. 1. 

4.2 Test Case 

First, an example case was used to test the computer syn- 

thesis program. The example considered is found in  Ref. 1, page 

24. 

of damping and constant spring constant. 

This case involves only two variables - constant coefficient 

There are two reasons 

why this particular case was chosen. It has the characteristic 

that at the optimum design the nonlinear deflection constraint is 

active and the normalized component of the gradient in the K 

direction is small. 

K to yield nearly the same criterion value. 

This small component invites many values of 

This means there is a 

long region where the deflection constraint and the criterion 

function contours nearly coincide. This is seen in Ref. 1, 

Figure 21. 

16 
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The synthesis program reeorted herein can be used to solve 

the two variable problem by letting CBT = 0 and keeping 6 = 0, i. e. 

i f  CBT = 0,the damping coefficient is constant with respect to time. 

If 6 = 0, the spring system has only one spring constant, K2' 

The results were very similar considering that two indepen- 

dent methods were used in  both the analysis and synthesis pro-, 

cedures. 

in/sec 

seconds. 

The load condition consisted of two pulses, the first 1000 

2 2 
for 0.05 seconds and the second 2000 in/sec for 0.01 

The results a r e  shown in Table 4. 

4. 3 Single Load Condition 

It was suspected that there exists a region containing a large 

number of designs all having the same optimum criterion value. 

This belief is supported by the results of both single and multiple 

load condition cases. 

three distinct terminal designs resulted. 

the same criterion value associated with it. 

been experienced before in structural synthesis problems (See 

Refs. 8 and 9). 

Three distinct starting points were used and 

Each terminal design had 

This phenomena has 

The three initial designs chosen for the single load condition 

case a re  listed in Table 1 under Case 1 . 
the pulse. 

The load condition w a s  
S 
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: . 

1% 

I -  

I -  

s(t) = 

2 [ 1000.0 in/sec t - < 0.05 sec. 

i o  t > 0.05 sec. 

The computer input data determining constraints and parameters 

for Case 1 is listed in  Tables 2 and 3. The terminal designs and 
8 

the percent reduction in  criterion values a re  listed in Table 4. 

The percent reduction in  criterion value is calculated with respect 

to the criterion value obtained in  Ref. 1 (See Table 4). It was felt 

that this value w a s  a fair standard even though the case in Ref. 1 

w a s  a multiple load condition case. 

load condition at the optimum design of Ref. 1 was the pulse S(t) 

defined above. It is seen from Tables 1 and 4, for Case 1 , that 

The reason is that the active 

8 

these distinct starting points have terminated at  three distinct 

designs all of which a re  characterized by approximately the same 

percent reduction in  criterion value. An illustration of the 

reduction in criterion value versus the computer running time is 

shown in Figure 14. 

4.4 Multiple Load Conditions 

4.4.1 Introductioa. A very salient characteristic of a 

multiple load condition synthesis problem is that the design which 

optimizes the system for any single load condition will - not, in  
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general, also be the optimum design for  the other load conditions. 

For  example, 3 distinct starting points were used to find the best 

poseible design for a single load condition. 

2 value was between 626 and 635 in/sec . 
However, when these designs were subjected to the second load 

condition of pulse set 11, the maximum absolute acceleration w a s  

2 f o a d  to be near 1000.0 in/sec . 
included the value of the criterion function at this design is 1000 

in/sec Adding pulses can change the 

form of the criterion function over major portions of the design 

space. If the additional pulses change the form of the criterion 

function in the region of the optimum design obtained ignoring the 

additional pulses, then the previous results a re  invalid. 

The f i n a l  criterion 

See Table 4 and Figure 15. 

Thus, if the second pulse is 

2 2 rather than 636 in/sec . 

With this in  mind, it is easily seen why all load conditions 

must be observed a s  the synthesis progresses. 

that the constraints for all the load conditions be satisfied in order 

that the design be acceptable. Therefore, the problem consists of 

choosing the direction which best minimizes the criterion function 

of all load conditions and will  not violate any of the constraints for 

all the load conditions. 

condition 1 possessing the maximum absolute acceleration and load 

condition 2 possessing a maximum relative deflection which puts 

It is also important 

This means it is possible to have load 
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the design on the deflection constraint. 

4.4.2 Finding an Advantageous Starting Design for the 

Multiple Load Condition Problem. 

with m i n i m u m  expenditure of computer running time the computer 

program used one load condition which was thought to  be more 

critical than the others. 

To find a good starting point 

This particular load condition w a s  used 

for ten minutes of running time. Ten minutes w a s  used because it 

was found that the criterion value decreased slowly after this time 

as shown in Figure 14. During this time al l  constraints af the 

multiple load condition problem were satisfied. 

an acceptable design resulted and was uaed as the starting point 

for the multiple load condition problem. The method described 

After 10 &nutes 

above was found to improve efficiency with respect to computer 

running time. 

4.4. 3 Results for Multiple Load Conditions. The results 

obtained from two synthesis problems previously worked in Ref. 1 

confirm the statement, that better or equal designs with respect to 

criterion values can be obtained by increasing the number of design 

variables. The two multiple load condition cases were Case 2 m 

for 
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0.0 < t < 0.001 sec. - -  Sll(t) = 2000. O in/sec 

0.0 < t < 0.01 sec. 
2 - -  Pulse set I = Szl(t) = 200. O in/sec 

0.0 < t <  0.01 sec. S31(t) = 2000.0 in/sec - -  

and case 1, for 

0.0 < t < 0.05 sec. 
2 

- -  S12(t) = 1000.0 in/sec 

Pulse set 11 = 

0.0 < t < 0.05 sec. 2 - -  Sz2(t) = 2000.0 in/sec 

A summary of starting designs, input data specifying side and 

behavior constraints and terminal designs for the more sophisti- 

cated shock isolator reported herein and the shock isolator of 

Ref. 1 can be found in Tables 1 thru 4. 

A comparison of the terminal designs and criterion values for 

Cases 1 

to a single load condition synthesis problem. 

and 1 reveal the effect of adding another load condition 
m S 

4. 5 Displacement Results 

The results of treating the maximum absolute acceleration as 

a behavior constraint and the minimum maximum relative displace- 

ment as  the criterion function did not yield significant improvement 

with respect to the percent reduction of criterion value for the one 
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case available in Ref. 1. 

The same terminal design w a s  obtained for each case. 

of the initial design, constraints and terminal designs for Ref. 1 

and the increased design variable cases a re  given in Tables 5 and 6. 

A two dimensional graph of the design space near the terminal 

Two initial starting points were used. 

A summary 

design for  the displacement problem is shown in Figure 16. 

felt that the upper bound constraint on the coefficient of damping 

was placed at  a value too low to allow the damping to become any- 

thing but a constant. 

the damping variables increased. 

system will  produce a smaller maximum deflection. 

the damping variables reached the upper bound. Since increasing 

damping was not allowed, the modified gradient direction focused 

all attention on the spring system a s  the main design variables. 

The f i n a l  design resembles that of Ref. 1, except for the gap and 

K as is seen from Figure 17. If the spring system consisted of 

only one spring constant and no gap variable, the resulting design 

would have been identical to that of Ref. 1. 

It is 

As the computer program progressed, all 

This is logical because a stiffer 

One by one 

2 



CHAPTER 5 
CONCLUSIONS AND RECOMMENDATIONS 

The results have revealed that more desirable shock isolator 

performances can be obtained by allowing the coefficient of damping 

to be a piecewise linear continuous function of time and replacing 

the single spring with a bilinear spring system. The percent 

reduction in criterion value with respect to the results of Ref. 1 

was chosen to be indicative of the degree to which a shock isolator 

performance w a s  judged more desirable. A summary of percent 

reduction in criterion values and f i n a l  designs appears in Table 4. 

Associated terminal designs are depicted in Figures 18 thru 21. 

The percent reduction in  criterion values for the Case 2 

a s  significant as  those for Case 1 

the shorter time duration in the load pulses of Case 2 

were not m 

It was felt that t h i s  was due to m' 

m. 

The synthesis method employed consisted of three types of 

moves in  the design space: (1) moving in  the negative gradient 

directi-on if  no constraints were active, (2) deciding whether to 

remain on active constraint or to move off it, and (3) when 

remaining on an active constraint finding the direction of travel 

containing the largest compbnent of the negative gradient. 

The results showed distinct terminal designs with the same 
23 
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criterion value. 

observed in previous synthesis problems (See Refs. 8 and 9) ,  can 

be attributed to a common characteristic of ~ the terminal design, 

such as perhaps energy absorbtion. 

It is felt that this phenomena, which has been 

There a re  several things that have been investigated in this 

study that represent advances beyond the two design variable 

system reported in Ref. 1. Because of the numerical integration 

technique employed in the analysis, the program has the capability 

of working with any type of pulse. 

definable in terms of a function. 

recorder could be uaed. 

The pulses do not have to be 

A series of points from a 

All of the developments in the modified gradient direction can 

The improved be applied to a general N dimensional design _space. 

shock isolator synthesis program can be specialized to take the 

form of the two design variable 

of damping with respect to time be zero and letting 6 = 0. 

case by letting the rate of change 

The method of using normals to the constraints to keep from 

entering the unacceptable region lends itself quite easily toilhear 

constraints. 

constraint proved successful. 

constraints cannot be employed successfully ar ises  when an  

unreasonable amount of computer time is required to calculate them. 

A linear approximation to the nonlinear behavior 

A situation where normals t o  active 
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This capability could be extended further by adding more 

variables such as the time between damping positions (See Fig. 3). 

The number of damping variables, spring constants and gaps could 

also be increased. Further extensions could include applications 

of variable damping and bilinear spring systems to problems with 

more than one degree of freedom. 
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FIGURE 1. SHOCK ISOLATOR 
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DISPLACEMENT, 2 

FIGURE 2. FORCE VERSUS DISPLACEMENT FOR BI- 
LINEAR SPRING 
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FIGURE 3. TIME DEPENDENT, PIECE WISE LINEAR, 
CONTINUOUS DAMPING 
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ACCEPTABLE R €GI ON 

FIGURE 4. FREE DESIGN POINT 
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FIGURE 8. L FOUND BY LINEAR APPROXIMATION TO 
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BEHAVIOR CONSTRAINT IS VIOLATED 
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APPENDIX I 

The equation of motion was obtained by Figure 1, using 

.. .. 
Newton's law ZF = A4-x, where M = mass and x = acceleration. 

The forces acting on the m a s s  a re  

.. 
Then Mx is 

- .  & = + @ ( y - i )  t K ( y - x )  (1-1) 

. .  .. .. 
Letting z = y - x then z = y - x and 

gives 

= y - e putting this in  (1-1) 

Letting M = unity and replacing ;with S(t), the input 

acceleration, (1-2) becomes 

.. 
1; + :k t K(z) = S(t) (I- 3) 

The acceleration that the m a s s  'experiences' is equal the 

acceleration of the mass with respect to a fixed point. 

absolute accelerationx = y - z. 
That is 

*. .. .. 

From (1-3) it is seen that the acceleration felt by the mass is 
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- .. 
S(t) - z = c k t K(z). 

It is difficult to solve (1-3) explicitly because of the characteristics 

of Z(t) and K(z). A numerical integration technique, the Runge- 

Kutta method has been chosen to obtain the unknown displacements, 

velocities, and accelerations. 

some if hand calculations are  used, but it lends itself quite easily 

to automated computation. 

The Runge-Kutta method is cumber- 

The method is accurate and efficient 

with respect to computer storage space for only information per- 

taining to the previous point is needed to obtain the next point. 

4 Runge-Kutta method is of order h . 
The 

In order to use the Runge-Kutta method equation (1-3) had to 

be transformed into two first order simultaneous equations. 

Let 

. 

dz 
dt 
- -  - Y  

and 
. .. - .  
y = z = -C z - K(z) t S(t) 

The general formula for two simultaneous ordinary differ- 

(4) entia1 equations i s  shown below . 
Let dz/dt = f l  ( t ,z,y) 

and 
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also 

K1 = fl(fo. zo,yo) A t  

L1 - - f Z ( t o * z o ~ Y o )  A t  

1 1 1 
K2 = f 1 0 2  (t +-At ,  z +- 2 K1’ Y0+‘z L1) 

L2 = f 2 0 2  (t +-At,  z 0 2  +- K1’ Y,+Z L1) 

A t  

1 1 1 
A t  

1 1 1 K3 = fl(t +- At, z +- y +- L2) A t  0 2  0 2 K2’ 0 2 

1 1 1 L3 = f2(t +- At, z +- 2 K2’ Y,+F L2) 

K4 = f (t + At, z t K 3 ,  yo+L3) 

Lq = f2(to+ At, zo+ K3, yo+ L3) 

A t  0 2  

A t  

A t  

1 0  0 

Then going f rom the point (z os yo* to) to (zo+Az, yo+Ays to +At), 

where A t  is specified, A z and Ay are found f rom the formulas 

below. 

A z  = - 1 (K1 + 2K2 + 2K3 + K4) 

A y  = - 1 (L1 + 2L2 + 2L3 + L4). 

6 

6 

For this case, 

t = time 

e = displacement 

y = velocity 
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Furthermore, from (1-3) 

dz 
dt - f l  ( t s  2,  y) = - - 

and 

This method may easily be extended to N equation 

dx2/dt, . . . , aXn/dt and put in matrix form'? However, it w a s  

found to be too time consuming for the 2 x 2 matrices resulting 

from this second order equation- 

The next step is to  obtain a feasible error analysis and 

thereby control the step size BO that one may place a tolerance at 

any point on the unkllowns z and y. 

e r r o r  of 0 (h ). 

for the ith unknown as 

The Runge-Kutta method bas 

4 Max Lotkin in reference (3) gives an er ror  bound 

where h = A t  

and 

fo rp tq+r  - < 4. 
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Recall that f l( t ,  x ,  y) = dz/dt and f2(t ,  x, y )  = dy/dt. In order 

to obtain a non-zero e r ror  bound, r was set equal to 1 and p = q = 

0. 

Then 2 Idfl/dyl = 1.0 = L / M .  

2 L = M and IE I that is the e r r o r  of y is 
1 or ,  

In terms of physical quantities this means that the e r ror  is 

proportional to M or y or the velocity to the ninth power. For 9 9 

M > 1.0 this is an intolerable error. To check the validity of this 

e r ro r  analysis an example equation was solved both exactly and by 

Runge-Kutta method and the difference at each solution point was 

recorded along with the error bounds given by the formulation 

above. 

The equation x" + x' + x = (t-1) exp (-t) + cos (t) has the 

solution x = t exp(-t) f sin(t) for the initial conditions x(0) = 0 

and x(0) = 2. 

4 The predicted e r ror  w a s  found to be as large a s  10 times 

the actual error.  

conservative to be used for step size control. 

It was concluded that the e r ror  analysis was too 

A rule of thumb for step size control is given in Reference 6. 

The rule states that the ratio (K -K )/(K -K ) from equation (I-a) 

should be less  than 2%. 

2 3  1 2  

Upon examining this, it is seen that this 
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method would not be efficient if the system were large and the K's 

for each unknown had to be checked at each point. 

that a predetermined step size, obtained by observing the conver- 

It was concluded 

gence of the solution as the step size decreased was not out of 

order for this problem. 

A test analysis case using the proposed Runge-Kutta method 

was done for a spring, mass, damper system which has constant 

spring stiffness equal to 36. 5 lb/in, mass of one and 

s (t) = 
t < 0.05 seconds - 

I 0.0 t > 0.5 seconds 

The exact solution found in Reference 1 and that obtained by 

the numerical technique are  respectively: maximum acceleration 

2 2 893.6 in/sec. , 893.68 in/sec. maximum deflections 1.1 in. and 

1.1025 in. 

Both of these maximum quantities occur at the same time. 

It w a s  concluded that the Rllnge-Kutta formulation would be accu- 

rate and efficient enough to use for the analysis. 
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APPENDIX XI 
CONVERGENCE 

A valuable but conservative convergence criteria is given in  

Reference ,7, .  However, operating computer time is an important 

factor in optimization problems. It w a s  thus deemed worthwhile 

to further explore this termination criteria in order to (1) place a 

less  conservative relation between the true optimum merit  and the 

best merit obtained by the synthesis program, and (2) reduce the 

costly computing time spent trying to lower the merit value when 

it is already within a prescribed tolerance of a local optimum 

design. 

The tolerance e ,  where E is greater than zero, is defined a s  
A 

the difference between the merit at  design point C and the true 

focal optimum C , o r  global minimum if the acceptable design 
4 

0 

space and criterion fbnction are convex. According to the sign 

convention used here, e would be less than zero if  a maximum 

were sought. 
A 

The reference proves that if C is the optimum design and 
0 

4 -L 

M(C ) the optimum merit, then at any acceptable design point, C, 
0 

A 4 

M(C) - M(C ) < c 
o =  
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provided the inequality below holds. 

4 

Reference 7: states that i f  g(C) goes to zero this condition is 

equivalent to the Kuhn-Tucker conditions. (See Appendix IV) 

The quantities L, M, and a a re  defined below. 

M = Number of design variables defining the space. 

L = The maximum "distance" between two acceptable points 

in the design space. A value for L is obtained from 

M 
upper - Clower)2 . Cupper and 

i i 
L2 = c (Ci 

i=i 

clowe r a r e  the bounds of the variables such that a l l  the 

acceptable points are knclosed in the rectangular space 

i 

of dimensions 

1 upper - - cpwer  Cupper -Glower 
fC0 0 8 8 s,....s 

a a 
- 3  

i= 0 i = O  
4 

where g. are the components of the gradient g and Vpis 
1 

T 
the m a t r h  (NTC NTC)". 

The contention here is that (11-2) really implies 

A & 

M(C) - M(C ) < K'. E where K' < 1. Starting with 
0 -  
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A 

the reference shows that the gradient, g,  may be rewritten for 

convenience a s  

4 ' 
g = P (c); t .zq y i u .  9 1 

i= 1 

T - -  where y .  are  the scalar components of V (e) NTC (C) g equal to 

(yl, yz, . . . , 7 } and q is the number of active constraints. 
9 1 

Q 
4 

P (c) = I - NTC v - ( N T C ) ~  
Q 9 

u. in (II-4) are  the normalized vectors spanning the subopace 

defined by the independent vectors of NTC or  those unit normals to 

the active constraints. 

simplicity. 

1 

T --. 
Let (C - C ) be denoted by y' for 

0 
-..A 

Then yt g of (11-4) becomes 

-T- T' 
y g = Y W ) ; ;  + Y 

i= 1 

or since y . 's  are  scalars 
1 

i= 1 
A 

It is given that g (C) - < E /2ML. 
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v. .  are the diagonal elements of V Furthermore, 
11 9' 

4 

Thus from (II-2) P1 (C) - C €/2LMa, and solving the inequality (U-6) 

- l i2  c €/2LMa 1 - - y. v:. 
1 11 

or 

with the fact that I y * 1 cannot be greater than L, the term 

using (II-7) again, 

thus 

Then (11-1) becomes 

2 2 
Since a = le E v.. the quantity 

j i  1J 
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Since each of the terms are less than 1 (M=9) 

and is the previously sought quantity K'. 

In (II-8) the right hand side can be replaced with E', the new 

Then a relation in terms of KE: is obtained to be tolerance. 

placed in (11-2) which is the test of the validity of (a-8). 

(U- 2) be comes 

Now 

1 c v, .  + -  
11 2 (2 z v.? 11 + l ) L  

i= 1 i=l 

(11-9) 
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APPENDIX III 
DIRECTION AND STEP SIZE 

The constraints which any acceptable design murt obey are 29 

in number. Twenty-two are placed in the coefficient of damping. 

cj - c j+l 5 CBT DT 

cj - c ~ + ~  5 CBT DT 

for j = 0, 1, .. . , 4 ( 5 )  

(A) 

for j = 0, 1, .. . , 4 ( 5 )  

C. < C.upper 
J -  J 

C. > C. lower 
J -  J 

Five are placed on the spring system. 

C6 = K > K lower 1 -  1 

1 C7 = K2 - > K 

C8 = gap< - allowable deflection 

C8 = gap 2 0 

Two are placed on the relative deflection. 
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Maximum deflection - < XA 

Minimum deflection - > -XA where XA > 0 
(2) (D) 

TOTAL 29 

The mat-referred to  as NTC, is composed of columns which 

a r e  the normal vectors of the active constraints printing 'into' the 

acceptable design region. T h e  candidates for NTC a re  stored in 

an  a r r ay  denoted by R(1,J) for I = 0, 1, . . . , 8 ;  J = 0 ,  1, . . . , 29. 

R is generated in the program. The first two columna must be 

redetermined every time R is needed, because they represent the 

n o r 4  to the deflection or acceleration constraints as the case 

may be. 

f o r d a t e d  once. 

The remaining columns a re  constant and need be 

The R matrix is shown in Figure III-1. The odd 

number rows 1 thru 31 refer to the lower bounds and the even 

numbered rows to the upper bounds. Rows 3 thru 12 a re  divided 

by12 to be normalized. 

The remaining constraints sets B, C,  and D are represented in 

columns 13 thru 24, 25 thru 31, and 1 thru 2 respectively. 

U e s e  rows represent constraint set A. 

If no constraints a r e  active, the move in the design space is 

the gradient direction. However, if one o r  more constraints a r e  

in violation at the j 

component of the gradient having the property that it does not point 

into a constraint 'wall. ' Before proceeding, it should be recalled 

th design, it is desirable to find the largest 
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th 
that when the j design point is on a constraint the most advan- 

tageous moves a re  not always along that constraint. Thus, it is 

desirable to have the ability t o  move off of any constraint at any 

time during the redesign process and also the ability to determine 

when it is desirable to leave the constraint and when to remain on 

it. 

th Where NTC. is the normal of the j constraint in violation 

and ACG is the gradient, if ACG has a positive component in the 

mTC. direction the result is to move off the constraint. If the 

inner product is negative, the component of the gradient in the 

- J - 
ccu 

J 

plane of the constraint j is subtracted from the gradient resulting 

in remaining on the constraint surface. 

The direction sought is termed u. 
4 4 

The vector u has the 

th - 
effect of removing the component of ACG which will violate the j 

constraint. A more regerous development of u is shown below. 
A 

The development is taken from Reference 2. Derivation of move 
- T -  direction to rnax u g(x) with N.(x) for i = 1,2, . . . Q - < M-1 and 

1 - 
x = (xl, x . . . k). The N. denoting the active constraint 2’ 1 

normals. 

Denote the gradient by g ,  and 

[ N1, NZ, . . .  Ng ] by NTC. 
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Then the allowable direction ;must be orthogonal to all 

constraint normals in  order to  lie in their tangent plane or 

NTC u = O. For convenience, let the magnitude of u be 1 or 

-T- u u=l. 

T -  4 

The problem m a y  be solved by the method of Lagrangian 

multipliers for constraints satisfied as equalities. That is, 

-T- T- - maximize 4 with u u = 1 and NTC u = O. Thus, 

4 = gT;t - T  XI NTC T- u t  A2 (1 - u -T- u) 

where X is column vector of the Lagrangian multipliers X 

A is a single multiplier to be found. 

Setting 

and 
1 1j 

2 

T -  Then using the fact that NTC u = O and multiplying (2) by 

T NTC gives 

NTC T- g t (NTC T N T C ) ; ~  = o 
(4) 

T The inverse of (NTC 

independent. Let NTC NTC)'l = VQ 

NTC) exists because the columns of NTC a re  

T 
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T- X is then-  VQ NTC g 1 

4 

u is found in terms of A from equation (3) to be 2 

-T- A is found by requiring u u = 1 2 

T 
u T 1  =- [ ( I -NTC-VQ NTC )g] =- [gTII-NTC*VQ*NTCT] 3 

2X2 2X2 

T -  T -T 1 -T T u u = l = -  g [ I  - NTC*VQ * N T C  ] [I-NTC.VQ*NTC ] g 2 
4X2 

2 = - 1 -T g [ I  - NTC*VQ*NTC T ] [ I  - NTC*VQ*NTC T -  ] g x2 4 

T- 
g 

4 d 

Thus the direction of u is g - NTC- VQ. NTC 

Again it is emphasized that i f  any of the columns of NTC have 

a positive inner product with gradient that column is deleted, thus 

allowing freedom to move off of the constraint. 

The process for determining the first step size, L, is 

derived for strictly linear constraints. However, with the 

corrective length process described and due to the nature of 

the constraints, the procedure applies itself well near the one 

nonlinear constraint . 
After ;is found, the difference between the allowable bound 

A - 
B., and the value of the bound function B (C) is determined for 
1 
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every constraint. 

i -  
i 1 1  1 

That is ,  A = e (B. - b.(x)). 

i 
1 

The term e 

bounds. 

an unacceptable region. 

be active. 

is +1 if i refers to an upper bound and -1 for lower 
- - 

Thus A B. > 0 indicates an acceptable region and AB. 6 0 

When AB. = z the constractive is said to 

1 1 - 
1 

I -  

The rate of change of A in the ; direction is found. With 

this linear estimation the length of u to render constraint i active 

is  found. 

column of the R matrix and u. 

i 
A 

4 th A B. changes with u a s  the inner product of the i 
1 

4 

This is easily seen by realizing that the i column of the R 

matrix (defined in the first part of this Appendix) is a vector 

orthogonal to the i 

direction or  AB., is (Ri, u) f o r  IuI = 1. Thus, for L u, where 

4 th constraint. The component of u in  the R i 
-L A A 

4 - 
3L 

L is the LINLEN length, As. can be forced a s  close to e as 

desired. 

1 

The minimum L. found f rom testing all the constraints is used. 
1 

The general formula for L is 
- 

A B. i i  1 
E E MIN L =  

J(Ri' Gi 1 2  
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4 i is the sign of (R., G) 
'2 a 

There is one restriction on allowable L's "That is any L 

which is negative and AB. is positive should be ignored, '' The 

reason for this resttiction is because positive AB. 

design and negative L is the opposite direction of u which means 

1 

an acceptable 
1 
4 

an increase in  merit rather than a decrease. The increase would 
- 

be permissible if AB is negative or  the program is trying to return 

to the acceptable region. 
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APPENDIX I V  

KUHN- TUCKER CONVERGENCE CONDITIONS 

(1 0% Before describing the Kuhn-Tucker convergence conditions 

it wi l l  be helpful to make several definitions. 

A function f(x) is convex if 

(IV- 1) 

for all 0 - -  < 8 < 1. All ;and z1 must be in region such that f ( 3  

and f@) a re  defined. 
d 

A function f(x) i l r  concave is is convex; that is, 

(1 - e) f@)  t e f(Z) 5 r f  (1-8) 2 t e x )  (IV- 2) 

4 

for all 0 

f(x) is defined. 

8 5 1. Again all x and x1 must be in the region for which 

The convergence theorem states that at a local maximum i f  

one or  more conlrtrainta are  satisfied a@ equalities, then the 

negative gradient of the criterion function will be a nonnegative 

linear combination of the gradients to the constraints, 

Let the constraints be r>f the form 

gi (G) 1. 0 for i = 1,2, . , . M. and the criterion be 

C ( 3  to be minimized. 
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The minus  gradient of the criterion lies in the convex cone of 

the gradients of the active constraints. 

'0 To test whether x is a local minimum, solve the equation 

IV-3 for a and a2, 
1 

(IV- 3) 

where 

1 Vgl(zo). Vg2(go) and VC(zo) are  vectors. If a 

-0 and a a re  nonnegative, the point x is a local minimum. 2 

The conditions f o r  the above to be valid a re  that the design 

space be convex or satisfy (IV-1) and that the criterion function be 

convex at least in the regionfor which (IV-3) is checked. In 

general it is not know whether the conditions above are  true. 

this case i f  (IV-3) is satisfied, further time spent- optimizing can 

In 

be termed "confidence time, " 
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RS 

INTEGERS 

I 

N 

P 

J 

K 

COL 

F 

APPENDIX V 
GLOBAL SYMBOLS OF COMPUTER PROGRAM 

FS 

WEDGE, VALY 

Vector containing one component for each 
constraint. Components have integer 
value 1 if constraint is active and pro- 
gram wants to remain on constraint; 2 if 
constraint is active and program wants 
to get off; and 0 i E  constraint is not in  
violation. 

Values f rom 0 to 8,  used in analysis pro- 
cedure to denote gradient components 
and -1 denotes best criterion value at  
present time. 

Number of steps required to analyse a 
de sign. 

Indexing integer. 

Indexing integer. 

Indexing integer. 

Number of active constraints which pro- 
gram does not want to get off (corres- 
ponds to number of 1's in RS) 

Has value 7 if C(8) is held fixed, 8 
otherwise. 

Value 0,1 ,2  when moving normal to nan- 
linear constraint . 
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CS8, CS9 Input variables allowing program to work 
with first 8 variable for CS8 steps and 
all 9 for CS9 steps. 

LC Input; number of load condition. 

ALC Number of active load con'dition. 

BOOLEAN VARIABLES; VALUE TRUE OR FALSE 

GRD True in analysis procedure when deter- 
mining gradients. 

ONE, CDA, CUSP 
P K ,  F O  constraint. 

True when moving normal to nonlinear 

EXAM, PS 

P P G  

SB1 

Real Variables 

T 

H 

XA 

DT 

Q, Ql * Q29Q3, T1 

CBT 

CBM 

Suppresses unwanted printout when 
moping normal to nonlinear constraint. 

True when no constraints a r e  active and 
gradient method gets stuck i n  'cusp. ' 
True when P P G  is true for two consecu- 
tive steps. 

Time at each step of analysis procedure. 

Step size in analysis procedure. 

Maximum allowable deflection or 
acceleration. 

Time between damping coefficient 
variables. 

Temporary storage locations. 

Absolute value of maximum allowable 
time late of change of damping. 

Upper bound on damping. 



EP 

EPL 

L 

Ms 

XE 

KLB 

KUB 

F S l l  

Storage Arrays : 

c1( 1 

ACCT( ) 
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Tolerance used for constraints. 

Tolerance used in convergence check. 

Maximum length of allowable move which 
does not violate constraints. 

Set at 10 
nonlinear constraint. 

6 used when moving normal to 

Displacement at which maximum 
acceleration occurs. 

Lower bound on spring constants. 

Upper bound on spring constants. 

Denotes amount variable C ( 8 )  is changed 
when C(8)  is held fixed. 

Vector containing best possible design 
at present time. 

Vector containing design to be compared 
with C1( ). 

Vector containing times of points used 
in analysis. 

Vector containing displacements as s o - 
ciated with TM( ). 

Vector containing velocities associated 
with TM( ). 

Vector containing acceleration asso- 
ciated with TM. 

Vector containing variations of variables 
used in finding gradient. 
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ACGR 

MAC(- 1) 

MD( - 1) 

Matrix containing gradient values of 
previous steps. 

Best criterion value at present from 
design C1( ). 

Nonlinear constraint value associated 
with MAC( - 1). 

MAC( ),MD( ) Vector index from 0 to 8 stores values 
associated with criterion and constraint 
functions respectively. 

fi. Array storing inverse of outer produc 
of normals to constraints = (NTC NTC j’. 

Input vector of allowable lower values 
for variables. 

Input vector of allowable upper values 
for variables. 

A W  ) Vector of gradient components. 

DG( ) Vector normal to  nonlinear constraints. 

v2( LV3(  ),v4( ),v5( 1, 
DC1( ), DC2( ), S1(, ) Temporary storage vectors. 

Procedure Names : 

ANL 

Input vector of load pulses. 

Input vector of load pulse times. 

Array storing vector of normals to 
active constraints. 

Matrix storing normals to  linear 
constraints. 

Analyses given design, gives maximum 
acceleration, maximum displacement , 
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, -  

GRA 

INV 

LINLEN 

active load condition and position of 
maximum acceleration. 

Compute s gradient. 

Computes inverse of matrix. 

Computes L, maximum allowable length 
of move vector U( ) which will not enter 
unacceptable region. 

Input for computer program consists of an initial design which is 

acceptable, initial values for displacement and velocity, a stepsize 

for the analysis, the time interval between successive damping 

variables, the variation of each variable used in computing the 

gradient, absolute value of maximum allowable time rate of change 

of damping, maximum absolute value of nonlinear constraint 

function, upper and lower bounds for  the variables, tolerances for 

constraints and convergence test, values of CS8, CS9, and FS11, 

values of load conditions and respective time durations. 

A duplication of the computer program written in ALGOL 60 

and run on a UNIVAC 1107 follows with flow chart. 
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IF GRD 
TRUE a; 

XbO. 0 b Y*O. 0 

ANALYSIS PROCEDURE; ANL 

IF GRD 

TJ 1 C B G  C(2) + 

0 
I 

Q 
p T T l  for J + ( O ,  1 ,  8) 

1 
G+O. 0 TI 

1 

I 

C B e C ( 1 )  + 
(C (2) - C( I))*( T-DT) /DT 

I 

t 

-cI-i I F T < 2 D T  

t 

K ( l )  t Y * H  Lt.-J 
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C B c C ( 3 )  + 
(C(4)-C(3))*(T-3 DT)/DT 

I F  T c  5 D T  i-$-- 

I .  
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CALCULATE 

. X c X + O .  5*K(l) 
KX WITH 

i -  
START I u (-CB*Y-KX+S *H 

K(3)4- (Y+O. 5L(Z))*H I 

T e  T+G i-f' 

IO. 5L(2 

CALCULATEKX 
WITH XcX+O.  5K(2) 

)-KXtS)*H 1 
I 

1 



(L(1)+2L(2)+2L( 3)tL(4)) 

88 

START 

L( 3))-KX+S)*H 
I 

I 

CALCULATE + IF GRD )-1 TRUY 

I F I f  -1  7 
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START 

IF GRD I Y U E  , 1 
PROCEDURE L= 

. 

GRADIENT PROCEDURE GRA 

 CALL PROCEDURE I 
I ANL - I 

ACG( J) C( - 1) *(MAC (J) -MAC (- 1 ) / DC ( J) 
MD(J) e(- 1 )*(MD(J) -MD( - 1)) / DC( J) 
FOR J+(O, 1 ,  F) 
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START 

I 



e 

W 

B(K, J ) c B ( K t l ,  J+1) 

-B(Kt l ,  l )*U( l tJ )  

FOR J+( l ,  1, COL-1) 

FOR K t ( l , l ,  COL-1) 

91 

b 

a C O ~ C O L t  1 

I I FOR J+(l, 1, COL)] 

1 [FOR I (1,1,COL)l 

B(COL, J ) C  V( 1 t J) 

FOR I+(l ,  1 ,  COL) 

MATRIX INVERSION 
PROCEDURE - INV 

PROCEDURE if 
B(It1, J+1) El 
X e l ,  1 ,  COL I 

I COLC COL- 1 I 
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PROCEDURE CALCULATING 
MAXIMUM ALLOWABLE 
DISTANCE OF TRAVEL 

LINLEN 

I A = 0 . 0  

1-1 

+ 4 
= ABS(A)] 

- c ((J- 1 )/ 2)))*- 1. OJ 

1 
B ~ ( - C B T * ’ D T  - ( c ( (~ -3 ) /2 )  

FOR 3+(3,1 , 12) 
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START 

I A e O . 0  ] 

A+Z DG(K)*U(K) 
Y - IF A # 0 . 0  

1 
I IF A < OTOI 

B-XA - MD(-1) 
I - I F  B > 0 . 0  

I 

A+U ((J-13)/2) i_ri 
I F A <  0 . 0  I F A <  0 . 0  

90 
J 1, 

lA--IAl I 

[ B t C ( ( J - B ) / 2 )  1 

1 J 

0, 

IFOR J = (13, 2, 27)  I 
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START 

I A = U((J-14)/2) 1 

1 
I '  

d 
L2 t D*Ml 

FOR J e ( 1 4 ,  2, 26) 

I 
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r i 

GO TO 

. 

L71.. - 

= INPUT DATA 

c (I)-C 1 (I) 
I = (0,1, 8 )  

PRINT 
INPUT DATA 

Y k 

ANALYSE STARTING I DESIGN 1 
I 

I F  DESIGN IS 
UNACCEPTABLE 

TIME, DISPLACEMENTS 
VELOCITIES, ACCELERATIONS 
MAC (-1) ,  MD (-1)  

r 1 

[GO TO LB3. .  

@ I 
9 

I 

L7.. 
t CONSTRUCT 

R MATRIX 
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I USP + TRUE + Q 
I r 

REPLACE 
C l C C  
M D ( - ~ )  + M D ( ~ )  
MAC ( - 1 ) - MAC ( 1 ) + 

I 
t 

Q <  - 0.0001 

EDGE+ 2 
4 

I =  1$  Kt 
I 

TEST SIDE 
.CONSTRAINTS 

I I C(I) Cl(I)+l.Z3*DG(I) I 
I I = :(O, 1 ,  F) 1 
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START 

I = (0, 1, F) 

Q 3 t l . O  

1 

RS(2) = 1 

COLUMN 
1 OR 2 OF 

FILL NTC ~ , N T C  
MATRIX 

MOVE OFF 
EACH CONSTRAINT 
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I 

TEST CRITERION * 
SHORTEN I VALUE 

ECREASE L 

TAKE STEP IN 
DIRECTION 
NORMAL TO 
ACTIVE 
BEHAVIOR 
CONSTRAINT 
SATISFYING 
ALL OTHER 
CONSTRAINTS 

9 
I W  

I 
MOVE IN 
C(8) DIRECTION 
AND SATISFYIN 
ALL OTHER 1FLx10-5+Lo CONSTRAINTS (I 

I 

*' *p4 
I = (0 ,1 ,  F) 

I 

4 ii, LINLEN$ 

&I WRITE U 
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c(1) Cl(1) t 
I 

L*U(I) 

I = (0, 1, F) 

. 99 

START 

IF MAC (8 )  
< MAC ( -1)  

I 
I 

MD( - 1 k M D ( 8 )  
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